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ABSTRACT

Three-dimensional turbulent horseshoe vortex flow past strut/endwall configura-

tions having both unswept and 45-degree swept lL.:ding edges is studied by numerical

solution of the compressible Reynolds-averaged Navier-Stokes equations. The Cartesian

form of the equations is transformed to a general nonorthogonal coordinate system

which is fitted to the geometry of interest and then solved using a consistently-split

linearized block implicit (LBI) algorithm. The turbulence model and computational

mesh provides for resolution of the viscous sublayer and employs at. isotropic eddy

viscosity based on solution of the turbulence kinetic energy equation and a specified

length scale. Although no flow measurements are available for the region near the

leading edge, predictions of the horseshoe vortex formation near the leading edge are

in qualitative agreement with flow visualization studies of similar flows. Predictions

of the relatively weak secondary flow in the corner region well downstream of the

unswept leading edge do not agree with available measurements, and this is believed

to be the result of numerical truncation error and/or inadequacy of the turbulence

model.
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INTRODUCTION

The flow around airfoils, struts and obstacles placed in an approaching stream

with a non-uniform velocity is a fundamental three-dimensional viscous I low ot

considerable importance. Examples of this type of flow inclu'de the flow; Uear .n

aircraft wing/fuselage junction and near a submarin, ht 1/5:|ii junction. Anst her

example occurs in axial compressors and turbines, where the bottndarv l.vers wlich

develop on the annular surfaces of the axial flow passage encounter row, o .t.t ioniar%

and rotating blades. Other examples include the flow of a river p i.st i 1,ridgle pier

or other underwater structure and other flows past surfaces where a protuberance is of
necessity present. Examples can even be found in such exotic devices as fliidic

control systems.

The feature common to all such flows is that a non-uniform velocity in an .ipproach-

ing boundary layer meets a local region of adverse pressure gradient due to the HWokalle

effect of the obstruction. This produces a complex flow field Consist ing of boundarv

layer separation and the formation of one or more horseshoe vortices around the

obstruction. Regions of interest include both the horseshoe vortex region at the

leading edge and the corner flow region downstream of the leading edge. rn the case of

an airfoil or strut, this corner flow region downstream of the leading edge contains

streamwise vortices which affect both the performance of the airfoil or strut them-

selves and also the performance of other flow devices located downstream. In flows

where heat transfer is critical, the presence of the streamwise vorticevs causes a

local thinning of boundary layers and transport of free stream fluid toward the wall

in portions of the flow region. This in turn serves to increase local heat transfer

rates. Order-of-magnitude increases and local heat transfer rates have been observed

experimentally.

Although the horseshoe vortex flow in the region of the leading edge is of

interest in its own right, it is also of considerable importance in connection with

the corner flows which occur downstream. Corner fl-ows are often viewed as an isolated

problem without giving much attention to the leading edge region where the corner

flows originate. In cases where leading edge effects are minimal or localized

(e.g. sharp or cusped leading edges placed at zero effective incidence to the approach

flow), this approach may be sufficient. It seems doubtful, however, whether corner

flows in general can be divorced from the flow in the leading edge region where the

corner rlows are formed, if for no other reason than to determine appropriate initial

conditions for a corner flow analysis.



Several experimental flow visualization studies of the horseshoe vortex flow

have been performed, and these have established that the flow consists of a three-

dimensional boundary layer separation in front of the obstruction followed by a vortex

flow which wraps around the obstruction. Little is available in the way of detailed

flow measurements (including all three velocity components) for the horseshoe vortex

problem, particularly downstream of separation. The only available measurements which

include the secondary velocity components appear to be the recent measurements of Mehta,

Shabaka and Bradshaw [I] for an unswept leading edge at zero incidence, taken in the

corner flow region well downstream of the leading edge, where the secondary flows are

relatively weak. Although these measurements do not cover the leading edge region where

the horseshoe vortex is formed, the measurements are nonetheless helpful in assessing

computational flow predictions.

Previous analytical studies have considered the three-dimensional boundary layer

flow upstream of separation (e.g., Dwyer [21) and have used rotational inviscid flow

theory to estimate secondary flows (Hawthorne [3]). The authors [4] have computed

solutions of the compressible Navier-Stokes equations for laminar flow near an elliptical

leading edge, including the leading edge flow separation, horseshoe vortex region, and

the formation of corner flows. Solutions are given in [4] for both zero and five

degree angles of incidence. In the present study, this approach is extended to

encompass turbulent flow and more general geometries. Solutions are given for tur-

bulent horseshoe vortex flow past both unswept and 45 degree swept elliptical leading

edges affixed to a flat plate endwall, at zero incidence.
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TIlE PRESENT APPROACH

Background

Because of the flow separation and horseshoe vortex f-low structure, analytical

approaches based on simplif ications such as boundary layer theory, rotational inviscid

(Euler) equations, and forward marching solut ion proceduires do inot seem adequate for

this problem. Consequently, the approach beinlg taken is the numerical solution of the

compressible Reynolds-averaged Navier-Stokes equations using an efficient and non-

iterative time-dependent linearized block implicit (1,BI) scheme. A "zone embedding"

approach is used in which the flow is computed only in ;a subregion of the overall flow

field in the immediate vicinity of the leading edge. This approach reduces the dif-

ficulty of constructing adequate body-fitted coordinate systems and is very economical.,

although it can he difficult to specify boundary conditions which adequately match the

embedded flow region to the surrounding flow region. A method for applying inflow/

outflow boundary conditions on curved coordinate surfaces was developed in the previous

study [4] of Laminar horseshoe vortex flow and is also used here. These boundary

conditions are derived from an assumed flow structure and physical approximat ions, and

allow inflow of an inviscid free stream and developing boundary layer, and outflow of

streamwise vorticity. The boundary conditions also transmit pressure waves through

the inflow boundary during the transient process, and this avoids the instability

or slow convergence often attributed to the reflection of pressure waves at an inflow

boundary with fixed velocity and pressure. The equation are s( Ived in the low Mach

number regime (M = 0.05) for which they approximate the flow of a liquid. The methods

used here have been applied in the transonic and supersonic flow regimes on other

problems.

Governing Equations

The computation of flow past swept leading edge geometries requires the use of

nonorthogonal coordinates. This is accompli.-hed here by a general coordinate trans-

formation which transforms the governing equations from a reference Cartesian coordinate

system to a general nonorthogonal coordinate system which is fitted to the geometry of

interest. The Cartesian velcoity components u. are retained as dependent variables in

the transformed system e1 equations. This same technique of transforming the Cartesian

system to general nonorthogonal coordinates is also used by Pull iim and Steger 101 and

Shamroth, Cibeling and McDonald [7].

3
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The transformation T from Cartesian coordinates x. to computational coordinates

yj is given by

T = y-J(xi) i,j = 1,2,3 (1)

Spatial derivatives are transformed according to

a j
a .- = y i (2)

where unless otherwise stated the summation convention is used for repeated indices,

and yJ. = yJ/ax. The coordinate system is defined by specifying the Cartesian
,i 1

coordinates of each computational grid point. The partial derivatives ax i/ay of the

inverse transformation T-I = xi(y ) are then computed using three-point second-order

difference formulas with uniform spacing of the computational coordinates yJ. The

transformation derivatives ay3 /axi are then computed from Dxi/DyJ using standard

procedures for computing derivatives of inverse functions (cf. Kaplan [5]).

Letting J denote the Jacobian determinant of the inverse transformation
(X'X 2' X3)(3

J 1 2 3

a(y , y ,

and making use of the identity

J y z 0 (4)
Dy

j  1

the governing Navier-Stokes equations are written in the following nondimensional

form: The continuity equation is

+ -- J yJ.Pu = 0 (5)at 3yj ,1i

where p is density and t is time.

The k-th component of the momentum equation is given by

a (PUkJ)
J+--- J Y (PulUk + 6ik ) = 0 (6)at - 'y 3  i ik i i

where p is pressure and the shear stress Tik is given by
= m au m aUk 2 D z

ik Re Y'k -- i m 3 ik -- -- (7)
eym  I ay 3 ay m

Here, Ve is a nondimensional isotropic effective viscosity coefficient which includes

both laminar and turbulent contributions. Re is a reference Reynolds number, and

4



(Sik is the Kronecker delLa function.

The equation of state for a perfect gas is given by

= r M- (8)

where T is temperature, M is a refercce Mach ntimher, r*lnd ' is the speci tic heat ratio.

The total enthalpy E is defined by
.) )

E = T/(Y- M2 + ( 12 (9)

where q2 = 6i "., and its distribution is 1)v\c'd the energy equation.

Although it is not necessary, it is hoLh convenient aind conmpu tationallv worthwhile

for the present problem to assume that 1: is a constant, F , and to omit solution of

the energy equation. This results in negligible error for flow at low Mach number

with no heat addition. Equations (8) and (9) can then he combined to produce an

adiabatic equation of state

y = o(E - (/2) (-1)/) (10)

which is used to eliminate pressure as a dependent variable in Eq. (0).

Coordinate Svstem

Perspective views of the geometry, coordinant, system ind computational grid for

each of the two leading-edge configurations considered here are shown in Fig. ]. The

coordinate system fits all solid surfaces within the compuLtational domain but is not

aligned with the direction of the free stream flow. Tlhe coordinate system is of suf-

ficient generality to treat leading edges of arbitrarv (smooth) cross-sectional shape

and with a swept leading edge whose angle reviv v.arv in the spanwise direction. In each

plane (y 3  constant) parallel to the endwall, the coordinates consist oif radial N

lines normal to the curve where this plane intersects the airfoil surface, and
9

circumferential y- lines parallel to this curve. These coordinate planes are "sheared"

by adding an arbitrary displacement )(v 3 to the Cartesian x coordinates for the

endwall ,.lane. Analytical coordinate transformations due to Roberts [8 were used

for each coordinate direction to redistribute grid points for adequate resolution of

the viscous sublayer regions on both the airfoil and endwal surfaces and of the

geometric curvature near the leading edge.

Turbulence Model

The turbulence model used falls into the category of ,ne-equation turbulence

models discussed by Launder and Spalding 19], and parallels tie method given by

Shamroth and Gibeling [10]. This model requires solution of a single partial- dif-

5



ferential equation governing turbulence kinetic energy k, in conjuction with a

specified length scale i. A turbulent viscosity P t is obtained from the Prandtl-

1/2
Kolmogorov constitutive relationship k h turbulent viscosity t is

assumed to be isotropic, and thu stress tensor in thc enisemble-averaged equation is

determined bv adding the turbulent viscosity to the mol(cular viscosity ii to obtain

the total effective viscosity p = + lt"

Specification of the length scale is the remaining task which is necessary to

treat the three-dimensionaL horseshoe vortex flow. This flow has turbulent shear

layers both on the endwall (fuselage) beginning upstream of the leading edge and also

on the airfoil or strut surface (and corner reg,-in) beginning at the leading edge.

Given an estimate of the mixing length at the edge of each of these shear layers and

its streamwise growth rate, a distributionot mixing length within the shear layers can

be obtained from semi-empirical relationships widely used in two- and three-dimensional

boundary layer caLculations. To estimate the growth rate of the two shear layers, a

boundary layer momentum integral procedure is used for each type of shear layer. Wind

tunnel blockage effects are included in the endwall shear layer calculation, and

turbulent transition is presumed to occur at the leading edge in the airfoil shear

layer calculation. The final turbulence model provides for resolution of the viscous

sublayer region near walls, and permits calculation of the separated horseshoe vortex

regions near the leading edge and in the corner.

The equation governing turbulence kinetic energy is given by Launder and

Spalding [11] for Cartesian coordinates. Applving the 'caicral coordinate transforma-

tion (1), this equation can be written as

D(pkJ) +-- .J Y [uik - ( +L m = (11)at iy Re k 0 k

j t D2_ ",. Jr,)

Re Li' 3' i Re

where
uo. )u.

D. 1 + . (12)Dij I a i '(ym*i aym ~

Here, c is the turbulence dissipation rate and ok is the turbulent Prandtl number

(taken here as 1.0).
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The turbulent viscosity is obtained from tei Prandt l-Kolmogorov relation

1/ 14 1/
= k-t = c 11 k (13)

where the dissipation rate is given by

S /3!4 k 31!; (14)
Ii

For high Reynolds number flow, c is approxiatcly 0.09. For low Reynolds number

and in the viscous sublayer, c is given a prescribed dependence on turbulence Reynolds

number R in the manner suggested by McDonald and Fish [121 for transitional boundary

layer flows. In [121, the turbulence Reynolds number R was appropriately defined as an

integral average across the boundary laver. lere and following [10], it is convenient

to define R as the local ratio of tUrbulnL to laminar viscosity R T t/hi. The

structural coefficient c is given in [12] -i; c = 4(a) where

0 f(R) / [i + b.6b a (f(R)-l)] (15)

where a = 0.0115 and
0

f(R) R 0.22 R\ < 1

( 6:.R (16 )I{+ 6.1A3 P, - 40
6.81 Rr  + .1!' -4

with a cubic polvnomial curve fit for values of R between I and 40.~T

It remains to specify a length scale distribution appropriate Ior the problem

under consideration. The horseshoe-vortex/corner I 1ow of interest here has moderately

thin shear layers on the endwall and strut surf ice, and the length scale distribution

is thus adapted from previous turbulence models for turbulent boundary la\'ers and

taken to be the conventionally defined mixing iength ef Prandtl. The diStribitiOn of

mixing length given by McDonald and Fish [12] has proven effective for a wide range

of two-dimensional turbulent boundary layers and is easily adapted for present use.

This distribution is given by

= tanh (cd/2 ) (17)

where Z is mixing length, 9_ is an outer-region va hue of mixing length, d is distance

from the wall, K is the von Karman constant (taken ihere as 0.41), and I is a

sublayer damping function given bv

!= P1/2 [(d+-23)/8] (18)

d+ d+

Here, P is the normal probnbil it/ function and d is defined by d d ( /.') / /v,

where T is shear stress and v is kinematic viscositv. For equilibrium boundary layers,

7



k. is observed to have a constnt value of about 0.09 6, where 6 is the local boundary

layer thickness.

The length scale distribution of Eq. (17) is adapted for present use by taking

d as distance to the nearest wall and by assigning a a distribution based on two-

dimensional momentum integral estimates of the boundary layer growth rates on the

endwall and on the strut. The computed estimates of boundary layer growth were

obtained from a simple integral prediction scheme rather than an attempt to scan the

intermediate transient solutions of the Navier-Stokes equations to determine some ill-

defined boundary layer thickness. Assuming a 1/7 power 1-iw velocity profile and a

skin friction law cf/2 = 0.0225 (G/ue6)1/4, the momentum integral equation can be

written as
du

h -+h eh dx 2 d = cf/2 (19)I dx2

where for the 1/7 power profile: h1 = 7/72 and h2 = 23/72. The momentum integral

equation is applied to both strut and endwall boundary layers. The free stream

velocity ue is imosed from a potential flow. The flow cases computed here are

enclosed in a wind tunnel, and since the endwall boundary layer causes blockage

effects in this instance, the free stream velocity is adjusted for this effect. If

distances are normalized by the tunnel half-height, then the free stream velocity adjusted

for blockage is given by~u~ e= 1/(i-6"), where for the 1/7 power velocity profile, the

displacement thickness 6 is related to 6 by 6 = 8 6 . This relationship for ue is

inserted into Eq. (19) prior to solution. Eq. (19) is solved using a second-order

linearized finite difference scheme described in [13].

Two boundary layer thickness distributions, 61 (x1 ) for the endwall boundary

layer and 62 (y 2) for the strut surface, are obtained by solution of Eq. (19). An

outer or maximum mixing length scale associated with each boundary layer is determined

from the formula 9 O = 0.09 6. In the core region outside the boundary layer, the

length scale is exponentially damped to a negligible value over a distance of about

two boundary layer thicknesses. In the overlap corner region, the outer or maximum

length scale t is taken as the greater of the two values associated with the strut and

endwall boundary layers.

Physical Boundary and Initial Conditions

Since the computational domain is chosen to be a region in the immediate vicinity

of the leading-edge/corner flow geometry (cf. Fig. 1) embedded within a larger overall

flow system, inflow and outflow boundary conditions which adequately model the inter-

face between the computed flow and the remainder of the flow system are required.

8
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The inflow/outflow conditions used are derived from an assumed flow structure and are

chosen to provide inflow with prescribed stagnation pressure (and stagnation enthalpy)

in an inviscid core region and with a given axial velocity profile shape in the endwall

boundary layer, and to provide outflow with a prescribed distribution of static pres-

sure in the cross section. These boundary conditions are compatible both with an

inviscid characteristics analysis and with the physical process by which most flows

are established. These boundary conditions allow both velocity and static pressure to

vary with time at the inflow boundary, and consequently, pressure waves are transmitted

upstream through the inflow boundary during the transient flow process and are not

reflected back into the computational domain. The reflection of pressure waves at an

inflow boundary where velocity and pressure are fixed in time has often been cited as

a cause of either instability or slow convergence in other investigations. These

boundary conditions are discussed in more detail in [14].

The initial and boundary conditions are devised from a rough approximation of the

two-dimensional potential flow velocity U I for the strut cross section, and from the

momentum-integral estimates for blockage B(x1) and for the boundary layer thickness

distributions 6 1 (x1 ) and 62 (y
2) on the endwall flat plate and strut surfaces, respectively.

Finally, boundary layer velocity profile shapes f1 (Y/61 ) and f2 (Y/62), 0 :S fi

f2 S 1 are defined, where y is a parameter indicative of distance from a wall. These

velocity profile shapes were taken from the analytical fit of Musker [15] to the Coles-

type of profile which matches 6 and cf from the momentum-integral calculations. The

initial conditions at time t = o are defined by

=UUI B(xI) fl (Y/61) f2 (Y/62 ) (20)

cp = - B2 U1 - U1 (21)

where U is the velocity vector and c is the pressure coefficient referred to the
p

reference conditions. The details of this procedure are not critical and are omitted,

since except for the shape and thickness of the inlet boundary layer profile, these

results serve only as a convenient method for selecting initial conditions. A reasonably

accurate estimate for the pressure drop which will produce the desired flow rate must

be made using any convenient source. For the present problem, the approximate poten-

tial flow corrected for blockage as in Eq. (21) is adequate. It is noted that

although these initial conditions do take into account several relevant features

of the flow, the important effects of flow separation, and horseshoe/corner vortex

formation are completely neglected. The initial flow field is thus a simple but

relatively crude approximation to the final flow field.

9
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At the inflow boundary y y I a "two-layer" boundary condition is employed

as in [4], such that stagnation pressure p is fixed at the free stream reference

value in the core flow region (y > 61) and the axial velocity profile shape ul /U =

fl(y/6 I) is fixed within the boundary layer region (y 3_ 61). Here, ue is the local

edge velocity which varies with time and is adjusted after each time step to the value

consistent with po and the local edge static pressure, which is determined as part of

the solution. The remaining inflow conditions are u2 = u 3/n 2 = 2 c /n 2 = 0,

where n denotes the normal computational coordinate, y . For outflow conditions, the

static pressure is imposed, and second derivatives of each velocity component are set

to zero.

At no-slip surfaces, each velocity component ui is set to zero, and the remaining

condition applied at these surfaces is that the derivative of pressure in the direction

normal to the surface is zero. This condition approximates the normal momentum equa-

tion to order Re- I for viscous flow at a no-slip surface. For the swept leading edge

configuration, the surface normal does not always lie on a coordinate line, and the

normal derivative boundary condition must be derived from the coordinate transforma-

tion data. Letting e. - 3r/DyJ denote the basis vectors for yJ, where r is the
1 2

position vector, then the unit vector n normal to the y - y coordinate surface is
- - -,I- -I i

given by n = e1 x e2/1e 1 x e21. If n are the Cartesian components of n, then the

normal derivative of * is given by

n VO = n y'i .yj (22)

The final boundary to be considered is the plane parallel to the endwall and

in the free stream. This boundary is assumed to be a plane of symmetry, so that the

flow represented is that past the strut mounted between parallel flat plates with

spacing 2H. This assumption is both convenient and corresponds to the conditions in the

wind tunnel experiment for the unswept leading edge flow, for which experimental

measurements are available.

10
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SOLUTION PROCEDURE

Background

The solution procedure employs a consistently-split linearized block implicit

(LBI) algorithm which has been discussed in detail by the authors in [13, 16]. There

are two important elements of this method:

(1) the use of a noniterative formal time linearization to

produce a fully-coupled linear multidimensional scheme

which is written in "block implicit" form; and

(2) solution of this linearized coupled scheme using a consistent

"splitting" (ADI scheme) patterned after the Douglas-Gunn [17]

(1964) treatment of scalar ADI schemes.

The method is thus referred to as a split linearized block implicit (LBI) scheme.

The method has several attributes:

(1) the noniterative linearization is efficient;

(2) the fully-coupled linearized algorithm eliminates instabilities

and/or extremely slow convergence rates often attributed to

methods which employ ad hoc decoupling and linearization assumptions

to identify nonlinear coefficients which are then treated by lag and

update techniques;

(3) the splitting or ADI technique produces an efficient algorithm

which is stable for large time steps and also provides a means

for convergence acceleration for further efficiency in computing

steady solutions;

(4) intermediate steps of the splitting are consistent with the governing

equations, and this means that the "physical" boundary conditions can

be used for the intermediate solutions. Other splittings which are

inconsistent can have severe difficulties in satisfying physical

boundary conditions [13].

(5) the convergence rate and overall efficiency of the algorithm are much

less sensitive to mesh refinement and redistribution than algorithms

based on explicit schemes or which employ ad hoc decoupling and lineari-

zation assumptions. This is important for accuracy and for computing

turbulent flows with viscous sublayer resolution; and

[ 11



(6) the method is general and is specifically designed for the complex

systems of equations which govern viscous flow in complicated

geometries.

This same algorithm was later considered by Beam and Warming [18], but the ADI

splitting was dcrived by approximate factorization instead of the Douglas-Gunn

procedure. They refer to the algorithm as a "delta form" approximate factorization

scheme. This scheme replaced an earlier non-delta form scheme [19], which has

inconsistent intermediate steps.

Spatial Differencing and Artificial Dissipation

The spatial differencing procedures used are a straightforward adaptation of

those used in [16] and elsewhere. Three-point central difference formulas are used

for spatial derivatives, including the first-derivative convection and pressure

gradient terms. This has an advantage over one-sided formulas in flow calculations

subject to "two-point" boundary conditions (virtually all viscous or subsonic flows),

* in that all boundary conditions enter the algorithm implicitly. In practical flow

calculations, artificial dissipation is usually needed and is added to control high-

frequency numerical oscillations which otherwise occur with the central-difference

formula.

In the present investigation, artificial (anisotropic) dissipation terms of

the form
• 2

21 2 uk
d. J (yi) 2  (23)i,1 j j )yj Dyj

are added to the right-hand side of each (k-th) component of the momentum equation (6),

where for each coordinate direction y], the artificial diffusivity d. is positive and

is chosen as the larger of zero and the local quantity pe (a ReAyj - 1)/Re. Here,

the local cell Reynolds number ReAyj for the j-th direction is defined by

Re = ReIl y-J Puit A e  (y i2 (24)
yJ i i /1" iy d

Ay ~ i ' 1 eL i

with no summation on J. This treatment lowers the formal accuracy to 0 (Ax), but the

functional form is such that accuracy in representing physical shear stresses in thin

shear layers with small normal velocity is not seriously degraded. This latter

property follows from the anisotropic form of the dissipation and the combination of

both small normal velocity and small grid spacing in thin shear layers. A value of

0.5 was used for a in the present calculations. Values lower than 0.5 have been used

to good effect in two space dimensions [20, 21], but it has not yet been possible to

investigate the role of smaller o values in three space dimensions.

12



Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of continuity (5), three

components of momentum (6) and the turbulence kinetic energy equation (11). Ancillary

relations (10) and (14) are substituted in these equations to eliminate p and c as

dependent variables. This produces a system of five equations in five dependent

variables: p, uI , u2, u3, and k. Using notation similar to that in [16], at a

single grid point this system of equations can be written in the following form:

3 H(M)/ t = D( ) + S( ) (25)

where 0 is the column-vector of dependent variables, H and S are column-vector

algebraic functions of 0, and D is a column vector whose elements are the spatial

differential operators which generate all spatial derivatives appearing in the govern-

ing equation associated with that element. In the present case, the only non-zero

element in S is generated by the last term in the turbulence kinetic energy equation

(11).

The solution procedure is based on the following two-level implicit time-

difference approximations of (25):

(H n+  - H n)/At = O(D n+  + S n+ l ) + (1-0) (Dn + Sn ) (26)

n+l n+1 n+. n
where, for example, H denotes H( n  ) and At = t -t . The parameter a

(0.5 5 S 5 1) permits a variable time-centering of the scheme, with a truncation

error of order [At 2 , (a - 1/2) At].

A local time linearization (Taylor expansion about 0 n) of requisite formal

accuracy is introduced, and this serves to define a linear differential operator L

(cf. [16]) such that

Dn+1 = Dn + Ln (0n+l n) + 0 (At2 (27)

Similarly,

Hn+1 = Hn + (@H/,)n (n+l _ n) + 0 (At2 ) (28)

sn+l = Sn + (,S/,,)n 0 n+ - n) + 0 (At2 )  (29)

Eqs. (27-29) are inserted into Eq. (26) to obtain the following system which is

linear in 0n+l:

(A - At Ln ) (,n+l - on) = At (Dn + Sn ) (30)

and which is termed a linearized block implicit (LBI) scheme.

13
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Here, A denotes a square matrix defined by

A E (,jH/,) n 
- At (s/a ) n  (31)

Eq. (30) has 0 (At) accuracy unless H E 0, in which case the accuracy is the same as

Eq. (26).

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate cross-

derivative terms and also turbulent viscosity and artificial dissipation coefficients

which depend on the solution variables. Although formal linearization of the convection

and pressure gradient terms and the resulting implicit coupling of variables is critical

to the stability and rapid convergence of the algorithm, this does not appear to be

important for the turbulent viscosity and artificial dissipation coefficients. Since

the relationship between p e and d. and the mean flow variables is not conveniently

linearized, these diffusive coefficients are evaluated explicitly at tn during each

time step. Notationally, this is equivalent to neglecting terms proportional to

ape3 or ad /a in Ln , which are formally present in the Taylor expansion (27), but
n n

retaining all terms proportional to pt or dj in both Ln and Dn.

It has been found through extensive experience that this has little if any

effect on the performance of the algorithm. This treatment also has the added

benefit that the turbulence model equations (in this instance the turbulence kinetic

energy equation) can be decoupled from the system of mean flow equations by an appro-

priate matrix partitioning (cf. [13]) and solved separately in each step of the ADI

solution procedure. This reduces the block size of the block tridiagonal systems

which must be solved in each step and thus reduces the computational labor.

In addition, the viscous terms in the present formulation include a number of

spatial cross-derivative terms. Although it is possible to treat cross-derivative

terms implicitly within the ADI treatment which follows, It is not at all convenient
n

to do so, and consequently, all cross-derivative terms are evaluated explicitly at t

For a scalar model equation representing combined convection and diffusion, it has

been shown by Beam and Warming [22] that the explicit treatment of cross-derivative

terms does not degrade the unconditional stability of the present algorithm. To

preserve notational simplicity, it is understood that all cross-derivative terms
n n

appearing in L are neglected but are retained in D . It is important to note that

neglecting terms in Ln has no effect on steady solutions of Eq. (30), since
n+ln = 0 and thus Eq. (30) reduces to the steady form of the equations: Dn + Sn =.

Aside from stability considerations, the only effect of neglecting terms in Ln is to

introduce an 0 (At) truncation error.

14
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Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (30) is split using

ADI techniques. To obtain the split scheme, the multidimensional operator L is

rewritten as the sum of three "one-dimensional" sub-operators L. (i = 1, 2, 3) each of1

which contains all terms having derivatives with respect to the i-th spatial

coordinate. The split form of Eq. (30) can be derived either as in [13, 16] by

following the procedure described by Douglas and Gunn [17] in their generalization and

unification of scalar ADI schemes, or using approximate factorization as in [18].

For the present system of equations, the split algorithm is given by

(A - AtLn) n - f) = At (Dn + Sn ) (32a)

(A - 8AtL n) -
n ) = A ( - ) (32b)

(A - aAtLn) ( =n+l n) A n) (32c)

where 4 and 4 are consistent intermediate solutions [13, 161. If spatial deriva-

Lives appearing in L. and D are replaced by three-point difference formulas, as1

indicated previously, then each step in Eqs. (32a-c) can be solved by a block-

tridiagonal elimination.

Combining Eqs. (32a-c) gives

(A - BAtLn) A- 1 (A - aAtLn) A -1 (A - fAtLn) (n+1 _)
(33)

= At (Dn + 
Snf)

which approximates the unsplit scheme (30) to 0 (At 2). Since the intermediate steps

are also consistent approximations for Eq. (30), physical boundary conditions can be

used for 0* and 4 [13, 161. Finally, since the Li are homogeneous operators,

it follows from Eqs. (32a-c) that steady solutions have the property that
0n+l * ** 0

ffi n fi) and satisfy

Dn + Sn = 0 (34)

The steady solution thus depends only on the spatial difference approximation used

for (34) and does not depend on the solution algorithm itself.
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COMPUTED RESULTS

Solutions for three-dimensional turbulent flow past both unswept and 45-degree

swept elliptical leading edges affixed to a flat plate endwall are presented here.

To assess the degree of accuracy obtainable in three-dimensional flow calculations, it

is obviously valuable to have experimental measurements for comparison. The recent

measurements by Mehta, Shabaka and Bradshaw [11 for turbulent corner flow downstream

of an unswept elliptical leading edge at zero incidence appear to be the only measure-

ments available which include secondary velocity components, and this flow was selected

for computation.

Solutions were computed for turbulent horseshoe vortex flow past both unswept

and 45-degree swept leading edges having the configurations shown in Fig. 1, each

having a Reynolds number Re = 130,000 and Mach number M = 0.05. The grids used were

1 2 3
18 x 28 x 18 and 18 x 24 x 21 (y , y , y ) for the unswept and swept cases, respectively.

The Reynolds number is based on the tunnel half-height of 2.5 inches. The geometry

consists of an elliptical leading edge with a half-chord of 6 inches, followed by a

slab with constant thickness of 2 inches. In the configuration with swept leading

edge, this cross section is "sheared" as shown in Fig. lb to form a sweep angle of

45 degrees at the endwall. The angle of sweep varies smoothly between 45 degrees

at the endwall and zero degrees at the symmetry plane midway between the wind

tunnel walls. This particular swept configuration was selected to produce a flow

which is symmetric about this midplane, for ease in imposing boundary conditions.

Mehta, Shabaka and Bradshaw indicate that the boundary layer on the endwall has a

thickness of approximately 1.0 inches at the leading edge; momentum integral cal-

culations were used to estimate an inflow boundary layer thickness which would match

this condition.

Convergence Rate

Turbulent flows, particularly in three dimensions, are especially difficult

to compute because of the very high degree of mesh redistribution required to resolve

viscous sublayer regions. Resolution of the viscous sublayer is believed necessary

to obtain an adequate representation of the turbulent shear layer behavior. In

addition, because of the leading-edge geometry and the high strut length-to-thickness

aspect ratio, this mesh redistribution is required for all three coordinate directions.

This contrasts, for example, with three-dimensional flow in a curved pipe or duct,

where only one or two (respectively) coordinate directions require substantial mesh

redistribution. As a consequency, the ratio of largest to smallest elemental

16
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control volume for the present calculation is approximately 3 x 10 9. The correspond-

ing matrix of difference approximations has an extremely wide range of eigenvalues,

and thus poses a computational problem for which rapid convergence is difficult to

achieve.

The present computational method employs variable time steps to accelerate

convergence, as discussed in [23]. Several procedures for time step selection are

presently under evaluation, but typically small time steps are used initially during

the elimination of impulsive transients, followed by larger time steps and the cyclic

use of a sequence of time steps. In addition, a smaller time step was used near the

leading edge than elsewhere in the flow field. Small time steps are effective in

reducing high (spatial) frequency error components, while large time steps are

effective in reducing low frequency errors.

An indication of both the degree and rate of convergence obtained for the

present calculations is shown in Fig. 2. For comparison, a curve representative of

the convergence behavior typically obtained for two-dimensional turbulent flow cases

is also shown. Although the present convergence rate is noticeably slower than that

observed using this same algorithm in other calculations, it is adequate for present

purposes. The present calculations ere terminated after approximately 100 iterations

for reasons of economy, since it appeared that changes in the solution at this point

were of minor significance and would not alter any of the conclusions drawn from

these results.

Results for Unswept Leading Edge

Computed results for the unswept leading-edge cas. are given in a series of

plots in Figs. 3 - 10. It is difficult to display grapaically the results of three-

dimensional flow calculations, and the present approac. is to consider contour and

velocity vector plots for selected two-dimensional planes and projected surfaces,

which are representative of the computed flow structure. Because of the multiple

length scales in these results, the solutions are plotted in some instances for the

entire computational region and grid, and in other instances only a portion of the

computed solution is shown. Grid point indices are used in these plots as a means of

identifying the extent of the region shown. The notation x, y, z is used to denote
i

the respective computational coordinates y shown in Fig. 1.

In Fig. 3, the coordinates and computational grid are shown for planes which

are parallel to the endwall. In Figs. 4 and 5, velocity vector plots from the

nominally two-dimensional flow region at the free stream symmetry plane midwav between

the tunnel walls are contrasted with the corresponding results at the plane of grid

points adjacent to the endwall and very near the endwall surface. The vector

17



magnitudes are renormalized for each plot and thus indicate only flow direction and

relative magnitude within the plot. In this region near the leading edge, the

computed flow structure has all of the characteristics observed in numerous flow

visualization experiments and in the authors' previous laminar calculations [4].

The flow near the endwall separates and forms a horseshoe vortex upstream of the

leading edge with peak reverse flow velocity in this instance about 20 per cent

of the free stream velocity. The reversed flow within the horseshoe vortex is

clearly evident in Fig. 5. A secondary vortex can also be seen at the leading edge,

but this is only marginally resolved.

In Fig. 6, the static pressure and velocity are shown for the (vertical) stagna-

tion flow plane containing the leading edge and extending upstream parallel to the

freestream flow. The horseshoe vortex is too small and too close to the leading

edge to be visible on the scale of Fig. 6, but is shown in Fig. 7 in a detail of the

region near the intersection of the leading edge and endwall. The peak velocity is

directed toward the endwall and parallel to the leading edge, and is about 35 per cent

of the freestream velocity.

A full scale view of the axial velocity and secondary or crossflow velocity is

shown in Fig. 8 for the plane perpendicular to the corner intersection and located

at the end of the elliptical leading edge region (the y = 20 plane, cf. Fig. 3).

Details of the corner flow downstream of the leading edge are shown in Figs. 9 and

10 at each of three axial locations (see Fig. 3 for locations). The growth of the

corner shear layer and a rapid decay of the secondary flow strength can be seen in

Figs. 9 and 10. The last axial location shown (y = 26) corresponds approximately to

axial station 2 (Fig. la) for which measurements of both axial and transverse

velocities were taken by Mehta, Shabaka and Bradshaw [i]. Their measurements are

shown in Fig. 11, and in this region (about 25 inches downstream of the leading edge)

the measurements show a single corner vortex having the same sense as that computed

near the leading edge but with a peak cross flow velocity of about 5 per cent of the

free stream velocity. The computed cross flow does not agree well with measurements

in this region, however, and indicates that the corner vortex flow has very small

cross flow velocities (less than 0.5 per cent of free stream velocity), and of op-

posite sense. This poor agreement is presumably the result of numerical truncation

error and/or inadequacy of the turbulence model. It is not possible to make any

further quantitative assessment on the basis of the available measurements alone.

It is unfortunate that experimental measurements were not taken near the leading

edge, and thus comparisons cannot be made in this critical region where the vortex

is formed.
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Related difficulties have been encountered in obtaining accurate three-

dimensional flow predictions for flow in curved ducts [241, and in that study, the

turbulence model does not appear to be responsible. It is believed that the present

disagreement with experiment is most likely the result ()f numerical error including

the added artificial dissipation. in a recent investigation of two-dimensional viscous

transonic flow past airfoils [201, it was found that significant reductions in the

magnitude (factors of 10 to 20) of the artifii.il dissipation are possible without

destabilizing the calculation and with a corre.sponding increase in accuracy. The

present calculation was repeated with a tenfold reduction in dissipation parameter

but was found to be unstable. Further work i.; needed to resolve the present

discrepancy between prediction and experiment.

Results for Swept Leading Edge

Computed results for the 45-degree swept leading edge configuration in Fig. lb

are given in Figs. 12 - 21. This flow also separates and forms a horseshoe vortex

upstream of the leading edge. The computed flow structure for the swept geometry

differs from that for the unswept geometry in two important respects. F'irst, the

strength of the horseshoe vortex at the leading edge is significantlv reduced by the

swept leading edge, as evidenced by a peak re\,cr:e Flow velocity of approximately

10 per cent of the free stream velocitv (c,,mpI;irle d with 20 per cent for the unswept

geometry). Secondly, outside the horseshoe vtrLoN region, a cross flow parallel to

the swept leading edge and directed outward awi\ from0 the endwall occurs due to the

swept geometry. The peak velocity parallel tt' th . swept leading edge is predicted

to be approximately 40 per cent of the free stream veocitv. This cross flow dis-

appears downstream of the swept leading edge and is completelv absent in the unswept

geometry.

The grid distribution used for this case is shown in Fig. 12. Side-view

projections of the flow near the surface of the strut are shown in Fig. 13 (entire

grid) and in Fig. 1.4 (detail near leading edge). The large cross flow parallel to

the swept leading edge is evident in each of these figures. Computed results for

the stagnation plane upstream of the leading edge are shown in Fig. 15 (entire grid)

and Fig. 16 (detail near intersection of leading edge and endwall). Computed dis-

tributions of velocity and pressure are given in Fig. 16 for a plane parallel to the

flat plate and located near the edge of the flat plate boundary layer. Details of

the flow near the leading edge are shown in Figs. 18 and 1) for the free stream

symmetry plane and for the plane of grid points idiaLcent to the endwall surface.

The reversed flow region inside the horseshoe vortex is clearly visible in Fig. 19.
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Finally, projections of the corner flow downstream of the lading edge are shown

in Figs. 20 and 21 at each of three axial locations (see Fig. 12 for location).

To summarize these results, the computed flow field near the swept leading edge

displays a reduced vortex strength, strong cross flow along the swept leading edge,

and a modified pressure distribution near the strut-endwall intersection. Although

these flow characteristics are qualitatively what one expects for this flow, no other

analytical or experimental results are available for quantitative evaluation, and at

this point the results serve mainly as a demonstration of capability for computing

this complex and difficut three-dimensional turbulent horseshoe vortex flow.

Concluding Remarks

Three-dimensional turbulent horseshoe vortex flow past both swept and unswept

leading-edge/endwall configurations has been studied by numerical solution of the

Reynolds-averaged Navier-Stokes equations. It is believed that the physical processes

involved require the viscous sublayer to be resolved, and the computational approach

provides for this resolution and has been used with general nonorthogonal coordinates.

Predictions of the horseshoe vortex formation near the leading edge are in

qualitative agreement with flow visualization studies of similar flows. No flow

measurements are available for the region near the leading edge. Prediction- of the

relatively weak secondary flows in the corner downstream of the unswept leading edge

do not agree with available measurements well downstream of the leading edge. This

disagreement is believed to be mainly the result of numerical error including that

due to artificial dissipation which is used to stabilize the solution procedure.

Although there is undoubtedly room for further evaluation and development of the

turbulence model being used, improvement in the numerical accuracy with which these

flows can be computed is needed before this can be undertaken.
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DETAIL OF CORNER FLOW DOWNSTREAM OF FIG. 9
UNSWEPT ELLIPTICAL LEADING EDGE
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DETAIL OF CORNER FLOW DOWNSTREAM OF FIG. 10
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MEASUREMENTS OF SHABAKA AND BRADSHAW FOR FIG. 11
CORNER FLOW DOWNSTREAM OF UNSWEPT ELLIPTICAL
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FIG. 12
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FIG. 13

FLOW ADJACENT TO SURFACE OF AIRFOIL
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FIG. 14

DETAIL OF FLOW ADJACENT TO

SURFACE OF AIRFOIL

16

11

(A) PRESSURE

VMXig- 17!"4

(B7 VELOCITY

(SURFACE TUFT VISUALIZATION)

36



FIG, 15
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FIG, 16

DETAIL OF FLOW IN STAGNATION PLANE
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FIG. 17

SOLUTION IN PLANE PARALLEL TO FLAT PLATE
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FIG. 18
DETAIL OF FREESTREAM FLOW PATTERN
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FIG, 19
DETAIL OF ENDWALL FLOW PAITERN
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FIG. 20
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FIG. 21
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